ECOLE POLYTECHNIQUE UNIVERSITAIRE DE NICE SOPHIA

Cycle Initial Polytech Première Année Année scolaire 2010/2011

Durée: 1h30

Epreuve d'électronique analogique N°2

Mercredi 13 Avril 2011

- Cours, documents et calculatrice non autorisés.
- Vous répondrez directement sur cette feuille.
- □ Tout échange entre étudiants (gomme, stylo, réponses...) est interdit
- □ Vous êtes prié :
 - d'indiquer votre nom et votre prénom.
 - d'éteindre votre téléphone portable (- 1 point par sonnerie).

RAPPELS:

Impédance	$\begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = \begin{bmatrix} Z_1 \\ Z_2 \end{bmatrix}$	$ \begin{bmatrix} Z_{12} \\ Z_{22} \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \end{bmatrix} $	2				
Gain en tension *:		$A_{v} = \frac{V_{2}}{V_{1}} = \frac{Z_{21}}{Z_{11} + \frac{Z_{11}.Z_{22} - Z_{12}.Z_{21}}{X}}$					
		* X représente l'impédance branchée en sortie du quadripôle.					
Impédance d'un C	e capacité	$1/(jC\omega)$ [Ω]					
Schéma électriqu équivalent du tra bipolaire NPN en de petit signal	ansistor	$\begin{array}{c c} & i_{b} & i_{c} \\ \hline \\ v_{be} & R_{S} & \end{array} \hspace{0.5cm} \begin{array}{c c} & i_{c} & \end{array}$	v _{ce}				
Gain d'un filtre p	asse-haut :	Gain d'un filtre passe-bas :					
A	$V = \frac{K}{1 + \frac{1}{j\frac{\omega}{\omega_{\rm C}}}}$	$A_{\rm V} = \frac{\rm K}{1 + \rm j \frac{\omega}{\omega_{\rm C}}}$					

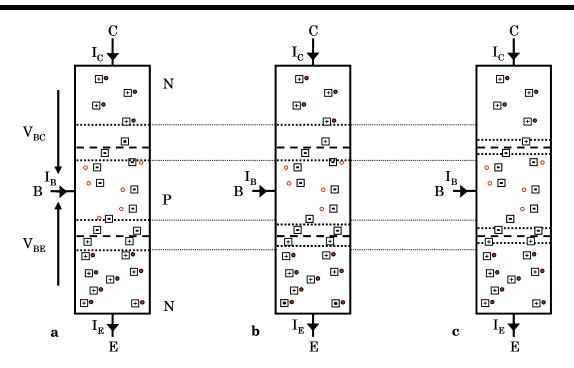
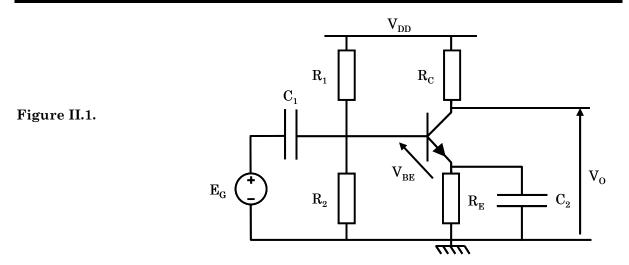
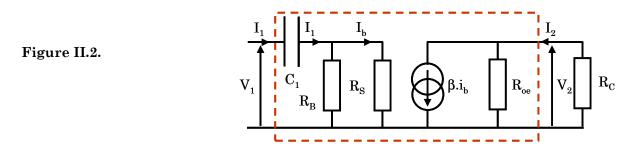


Figure (I.1).


A l'aide de la figure (I.1), décrivez le fonctionnement interne du transistor bipolaire suivant ses trois régimes : bloqué (a), linéaire (b) et saturé (c). Vous pourrez ajouter le mouvement des électrons et des trous sur les figures.

bloqué (a)

linéaire (b)


BROUILLON			

saturé (c)

On souhaite pré-amplifier les vocalises d'une personne dans la gamme de fréquence $10~{\rm Hz}-20~{\rm kHz}$ avec le circuit de la figure (II.1).

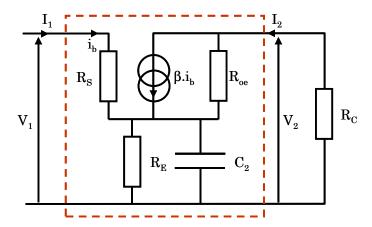
II.1. Influence de la capacité C₁. (4.5 pts)

Le schéma petit signal du pré-ampli est donné à la figure (II.2) et ne fait apparaître que la capacité C_1 (C_2 ne joue aucun rôle dans ce schéma aux fréquences considérées).

II.1.a. Expliquer le rôle de la capacité C₁ (0.5 pt)

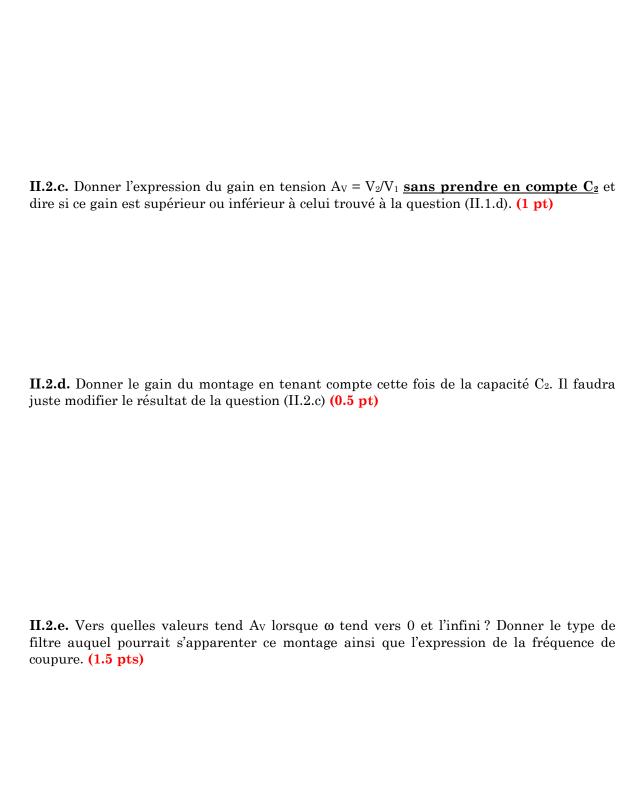
II.1.b. Donner l'expression de la résistance R_B. (0.5 pt)

les	s calculs, viseur de	on	posera	$R_{eq} =$	R _B //	Rs	et ib	sera	déterminé	en:	fonction	de	I ₁ à	. partir	ďun
uı	viseur de	cour	rant. (1	pt)											
מת															
BKO	UILLON														


II.1.c. Donner la matrice impédance du quadripôle <u>facile</u> délimité par les pointillés. Pour

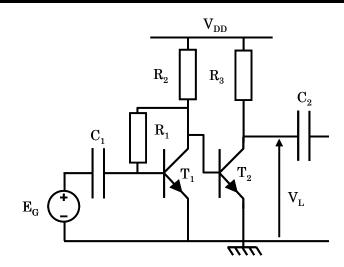
BROUILLON	

II.2. Influence de la capacité C2. (5 pts)


Figure II.3.

Le schéma petit signal du pré-ampli est donné à la figure (II.3) et ne fait apparaître que la capacité C_2 (C_1 ne joue aucun rôle dans ce schéma aux fréquences considérées).

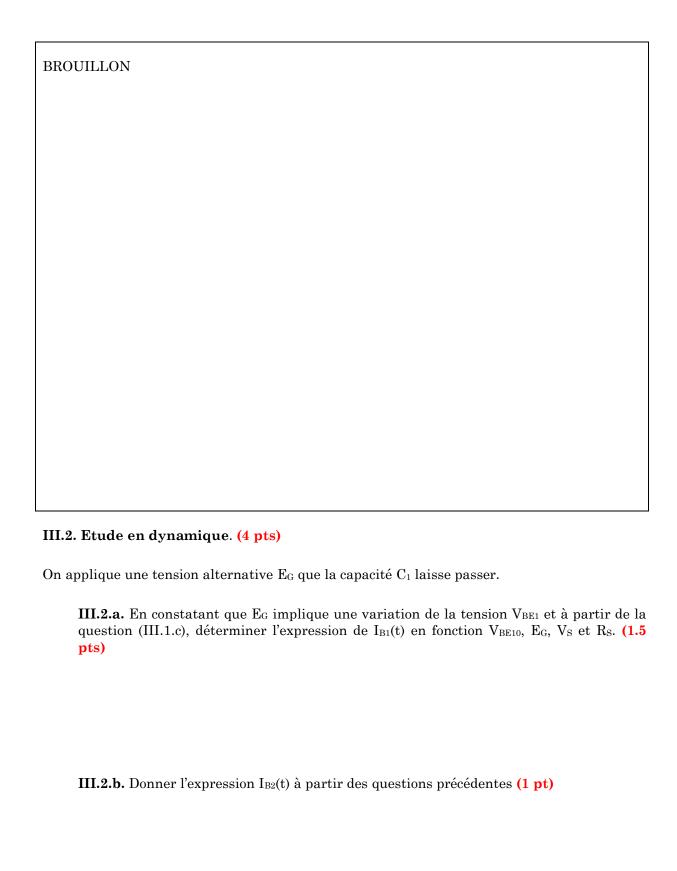
II.2.a. Expliquer le rôle de la capacité C₂ (0.5 pt)


II.2.b. Donner la matrice impédance du quadripôle <u>facile</u> délimité par les pointillés <u>sans</u> <u>prendre en compte C_2 </u>. Simplifier cette matrice en considérant que $R_{oe} >> R_E$. (1 pt)

II.2.f. Si on se place à présent aux bornes de la résistance R_E , quel serait le type de filtre correspondant au gain $A_V = V_{RE} / V_1$. Que pouvez-vous dire sur la variation de la tension aux bornes de R_E pour des fréquences supérieures à la fréquence de coupure (0.5 pt)

EXERCICE III : Autre pré-amplificateur de vocalises (7 pts)

Figure III.1. Les deux transistors sont identiques avec un gain β . On supposera que $1 + \beta = \beta$. La jonction base-émetteur est caractérisée par V_S et R_S .


On souhaite pré-amplifier les vocalises d'une personne dans la gamme de fréquence $10~{\rm Hz}-20~{\rm kHz}$ avec le circuit de la figure (III.1).

<u>L'indice 0 correspond au nom d'une variable en régime statique. Par exemple</u> $\underline{I_{C1}(t)} = \underline{I_{C10} + i_{C1}(t)}$

III.1. Etude en statique. (3 pts)

III.1.a. Identifier les courants qui passent dans la résistance R₂. (0.5 pt)

III.2.c. Donner l'expression V_{CE2}(t) à partir des questions précédentes. (1 pt)

III.2.d. Donner finalement l'expression du gain en tension $A_V = \frac{\partial V_{CE2}}{\partial E_G}$. (0.5 pt)

BROUILLO	N			

III.3. BONUS. (1.5 pts)

Faire le schéma petit signal du circuit de la figure (III.1) en négligeant les résistances R_{oe} (= $1/h_{oe}$) et déterminer l'expression du gain $A_V = \frac{v_L}{E_G}$

BROUILLON